If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10a^2-12a-14=0
a = 10; b = -12; c = -14;
Δ = b2-4ac
Δ = -122-4·10·(-14)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{11}}{2*10}=\frac{12-8\sqrt{11}}{20} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{11}}{2*10}=\frac{12+8\sqrt{11}}{20} $
| j=10=13 | | 40+84+(7x-7)=180 | | 15+7v-30=v+75 | | 10z-50=4z+30 | | -3x+138=-6x | | 6u+7-15=56+u-39 | | x3+5x-67=0 | | 14(m+15)=518 | | 28(g-944)=672 | | y/8-8=6 | | 20m=320 | | 1/2x+30=1/2(x+5) | | 2.24=2x/4-x | | 560/u=28 | | t/8+146=166 | | h/18-108=116 | | s+319/26=28 | | w+50=16w-25 | | c-773/18=7 | | 18k+84=858 | | 29p-60=143 | | 15-4n-30=27 | | 66-p=17 | | 5c-6=3c+24 | | 12b+28=19b | | d/7+35=39 | | 4/9(+x13)=8 | | 9+3p=57 | | -14+9k=-68 | | 4x+12=9x-33 | | r/9=66 | | 24/p=3 |